목적 : numpy 형식을 tensor 형식으로
numpy를 tf.const로 바꾸기 :
tf.convert_to_tensor(X, np.float32) #X: numpy 형식
또는
tf.constant(X)
numpy를 tf.Variable로 바꾸기
tf.Variable(X)
코드 :
#============================================================
import tensorflow as tf
import numpy as np
from sklearn import datasets
mnist = datasets.fetch_mldata('MNIST original', data_home='.')
X = mnist.data
t = mnist.target
sess = tf.Session()
print("original X:",len(X[0]))
X_tensor_const = tf.convert_to_tensor(X, np.float32)
print("after const:",X_tensor_const)
print("after const contents:",X_tensor_const.eval(session = sess)[0][300:320])
print("after const2:",tf.constant(X.astype(float)))
print("after const2 contents:",tf.constant(X.astype(float)).eval(session= sess)[0][300:320])
X_tensor_var = tf.Variable(X.astype(float))
init = tf.global_variables_initializer()
sess.run(init)
print("after var:",X_tensor_var)
print("after var contents:",X_tensor_var.eval(session = sess)[0][300:320])
#============================================================
결과 :
#============================================================
original X: 784
after const: Tensor("Const:0", shape=(70000, 784), dtype=float32)
after const contents: [253. 243. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 38. 165. 253. 233.]
after const2: Tensor("Const_1:0", shape=(70000, 784), dtype=float64)
after const2 contents: [253. 243. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 38. 165. 253. 233.]
after var: <tf.Variable 'Variable:0' shape=(70000, 784) dtype=float64_ref>
after var contents: [253. 243. 50. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 38. 165. 253. 233.]
#============================================================
'공부(Deep learning) > 구현-기초' 카테고리의 다른 글
[tensorplow, numpy, python] 구현시 자주 햇갈리는것들 정리 (0) | 2018.04.13 |
---|---|
[tensorflow] mnist 데이터 reshape 하기 (0) | 2018.04.12 |